本文介绍了用于检测,位置和跟踪颜色对象的嵌入式视觉系统的开发;它利用单个32位微处理器来获取图像数据,过程并根据解释的数据执行操作。该系统旨在用于需要使用人工视觉进行检测,位置和跟踪颜色对象的应用程序,其目标是以降低的规模,功耗和成本的范围实现。
translated by 谷歌翻译
我们简要描述 - 主要通过非常简单的示例 - 不同类型的答案程序程序,并提出了用于指定的注释:数据库维修和一致的查询答案;与他们的保密观点和查询评估;数据库中因果关系的反事实干预;以及机器学习中的基于反事实的解释。
translated by 谷歌翻译
机器人系统的远程操作用于精确而精致的物体抓握需要高保真的触觉反馈,以获取有关抓握的全面实时信息。在这种情况下,最常见的方法是使用动力学反馈。但是,单个接触点信息不足以检测软件的动态变化形状。本文提出了一个新型的远程触发系统,该系统可为用户的手提供动感和皮肤刺激,以通过灵敏地操纵可变形物体(即移液器)来实现准确的液体分配。实验结果表明,为用户提供多模式触觉反馈的建议方法大大提高了用远程移液器的剂量质量。与纯视觉反馈相比,当用户用多模式触觉界面与视觉反馈混合使用多模式触觉接口时,相对给药误差减少了66 \%,任务执行时间减少了18 \%。在CoVID-19,化学实验,有机材料和伸缩性的抗体测试期间,可以在精致的给药程序中实施该提出的技术。
translated by 谷歌翻译
在各种地形上进行运动的能力对于腿部机器人至关重要。但是,机器人必须更好地了解其在不同地形上进行强大运动的表面。动物和人类能够在脚上的触觉感觉的帮助下识别表面。虽然,腿部机器人的脚触觉感觉并没有得到太多探索。本文介绍了针对触觉脚(TSF)的新型四足机器人Dogtouch的研究。 TSF允许使用触觉传感器和卷积神经网络(CNN)识别不同的表面纹理。实验结果表明,我们训练有素的基于CNN的模型的足够验证精度为74.37 \%,对线模式的90 \%\%的识别最高。将来,我们计划通过呈现各种模式深度的表面样本并应用高级深度学习和浅层学习模型来改善预测模型。此外,我们提出了一种新颖的方法,用于导航四倍和腿部机器人。我们可以安排触觉铺路纹理表面(类似于盲人或视障人士)。因此,只需识别将指示直路,左或右转弯,行人穿越,道路等的特定触觉图案,就可以在未知环境中进行运动,无论光线如何,都可以允许强大的导航。配备了视觉和触觉感知系统的未来四足机器人将能够在非结构化的室内和室外环境中安全,智能地导航和交互。
translated by 谷歌翻译
银河系的半分析模型(SAM)的关键要素是晕光的质量组装历史,该历史是在树结构中编码的。构建光环合并历史的最常用方法是基于高分辨率,计算密集的N体模拟的结果。我们显示机器学习(ML)技术,特别是生成的对抗网络(GAN),是一种有希望的新工具,可以通过适度的计算成本解决此问题,并保留模拟中合并树的最佳功能。我们通过使用两个Halo Finder-Tree-Tree Builder算法构建的星系及其环境(EAGLE)模拟套件的有限的合并树样品来训练我们的GAN模型:Subfind-D-D-Trees和Rockstar-Consistentrees。我们的GAN模型成功地学习了具有高时间分辨率的结构良好的合并树结构,并在考虑训练过程中最多三个变量时,重现用于训练的合并树样品的统计特征。这些输入(我们的GAN模型)也学到了其表示,是光环祖细胞的质量和最终的后代,祖细胞类型(主晕或卫星)以及祖细胞与主分支中的祖先的距离。后两个输入的包含大大改善了对光环质量生长历史的最终学识,尤其是对于子发现样的ML树。当将ML合并树的同等大小的样本与Eagle模拟的样品进行比较时,我们发现了与子发现样的ML树的更好一致性。最后,我们的基于GAN的框架可用于构建低和中间质量光环的合并历史,这是宇宙学模拟中最丰富的。
translated by 谷歌翻译
现代行业仍依靠手动制造业务,安全的人机互动现在是非常兴趣的。速度和分离监测(SSM)允许通过在机器人操作期间维持保护分离距离来实现紧密和高效的协作情景。本文侧重于一种新的方法来加强对机器人手段的触觉反馈来加强SSM安全要求。基于机器人和操作员的人的反应时间和瞬时速度,触觉刺激为机器人提供了危险运动和接近机器人的早期警告。进行初步实验以确定参与者在具有受控条件的协作环境中暴露于触觉刺激时的反应时间。在第二次实验中,我们将我们的方法评估为人工和Cobot进行协同行星齿轮组件的研究案例。结果表明,与仅在视觉反馈的操作员相比,施加的方法增加了机器人的末端效应器之间的平均最小距离,手中的末端效应器与44%增加了44%。此外,没有触觉支持的参与者已经失败了几次以维持保护性分离距离。
translated by 谷歌翻译
我们提出了答案设置的程序,该程序指定和计算在分类模型上输入的实体的反事实干预。关于模型的结果,生成的反事实作为定义和计算分类所在实体的特征值的基于因果的解释分数的基础,即“责任分数”。方法和程序可以应用于黑盒式模型,也可以使用可以指定为逻辑程序的模型,例如基于规则的分类器。这项工作的主要重点是“最佳”反事实体的规范和计算,即导致最大责任分数的人。从它们中可以从原始实体中读取解释作为最大责任特征值。我们还扩展程序以引入图片语义或域知识。我们展示如何通过概率方法扩展方法,以及如何通过使用约束来修改潜在的概率分布。示出了在DLV ASP-Solver的语法中写入的若干程序,并与其运行。
translated by 谷歌翻译